DNA data storage is an attractive option for digital datastorage because of its extreme density, durability and eternal relevance. This is especially attractive when contrasted with the exponential growth in world-wide digital data production. In this talk, we will present our efforts in building an end-to-end system, from the computational component of encoding and decoding to the molecular biology component … Read More

Excessive power consumption and dissipation of electronics with technology scaling, is a serious threat to the Information Society as well as to the environment and especially smacks a hard blow to the future of energy-constrained applications such as medical implants and prosthetics. This impending energy crisis has roots in the thermal distribution of carriers, which poses fundamental limitation on energy … Read More

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease affecting approximately 35 million individuals world-wide, with associated annual healthcare costs in the US estimated to be approximately $15 billion. Current treatment requires either multiple daily insulin injections or continuous subcutaneous (SC) insulin infusion (CSII) delivered via an insulin infusion pump. Both treatment modes necessitate frequent blood glucose measurements to determine … Read More

Creation of extremely strong and simultaneously ultra lightweight materials can be achieved by incorporating architecture into material design. We fabricate three-dimensional (3D) nano-architectures, i.e. nanolattices, whose constituents vary in size from several nanometers to tens of microns to centimeters. These nanolattices can exhibit superior thermal, photonic, electrochemical, and mechanical properties at extremely low mass densities (lighter than aerogels), which renders them ideal for many … Read More

By now, we have a fairly good understanding of how to design coordinated control strategies for making teams of mobile robots achieve geometric objectives in a distributed manner, such as assembling shapes or covering areas. But, the mapping from high-level tasks to geometric objectives is not particularly well understood. In this talk, we investigate this topic in the context of … Read More

Recent advances in sensing, communication and computing allow cost effective deployment in the physical world of large-scale networks of sensors and actuators, e.g. Internet of Things, enabling fine grain monitoring and control of a multitude of physical systems and infrastructures. Such systems, called cyber-physical, lie at the intersection of sensing, communication, computing and control. The close interplay among these fields … Read More

Integrated GHz ultrasonics on planar systems such as CMOS chips are enabled by integration of fast, deep sub-micron transistors and GHz thin film piezoelectric transducers. Sonic wavelengths on the order of a few microns can generate wave packets with spatial extent that is less than the substrate thickness. The role of diffraction of wave packets, coupled with time-of flight have … Read More

Stochastic Approximation algorithms are used to approximate solutions to fixed point equations that involve expectations of functions with respect to possibly unknown distributions. The most famous examples today are TD- and Q-learning algorithms. The first half of this lecture will provide an overview of stochastic approximation, with a focus on optimizing the rate of convergence. A new approach to optimize the … Read More